A∩ B dibaca himpunan A irisan himpunan B. Dengan diagram Venn A ∩ B bisa dinyatakan seperti pada Gambar berikut ini. daerah irisan A dan B 2. Gabungan Himpunan A gabungan B ditulis A ∪ B = {x | x ∈ A atau x ∈ B} Contohnya : A = {1, 2, 3, 4, 5} B = {2, 3, 5, 7, 11} A ∪ B = {1, 2, 3, 4, 5, 7, 11} 3. Selisih
Menentukan Banyaknya Pemetaan/FungsiPerhatikan tabel berikut Dengan demikian maka rumus menentukan banyaknya fungsi atau pemetaan apabila banyaknya anggota himpunan A, nA = m dan banyaknya anggota himpunan B, nB = n adalah Banyaknya pemetaan dari A ke B = Banyaknya pemetaan dari B ke A = Contoh Jika K = { x x < 10, x elemen bilangan prima} dan L = {x 2 < x < 5, x eleman bilangan asli}, maka tentukan a. Banyaknya pemetaan dari K ke Lb. Banyaknya pemetaan dari L ke KSelesaian K = {2, 3, 5, 7}, nK = 4L = {3, 4, 5} , nL = 3Jadi a. Banyaknya pemetaan dari K ke L = b. Banyaknya pemetaan dari L ke K = Penyajian Bentuk Fungsi1. Dengan Diagram PanahRelasi antara himpunan A dan himpunan B dapat dinyatakan oleh arah panah. Oleh karena itu, diagram tersebut dinamakan diagram contoh diagram panah2. Dengan diagram CartesiusRelasi antara himpunan A dan B dapat dinyatakan dengan diagram Cartesius. Anggota-anggota himpunan A berada pada sumbu mendatar dan anggota-anggota himpunan B berada pada sumbu tegak. Setiap pasangan anggota himpunan A yang berelasi dengan anggota himpunan B dinyatakan dengantitik atau Dengan Himpunan Pasangan BerurutanHimpunan pasangan berurutan disajikan dengan mendaftar anggotanya urut dari daerah asal ke daerah 4,2, 5,3}Diskusi di grup WALatihan Soal1. Diketahui himpunan A = {faktor dari 10} dan B = {faktor prima dari 30}. Banyak semuapemetaan yang mungkin dari himpunan A ke himpunan B adalah ....2. Diketahui himpunan F = {p, q, r, s, t, u} dan G= {9}. Banyaknya pemetaan yangmungkin dari G ke F ada .................3. Tuliskan sebuah contoh fungsi dalam kehidupan sehar-hari, dan nyatakan dalam himpunan pasangan berurutan!Silakan latihan soal di atas dikerjakan pada buku kalian kemudian hasilnya difoto dan dikirim melalui tautan bersamaan dengan rangkuman materi melalui tautan di bawah ini, dengan menuliskan juga nama, kelas dan nomor absen
Carauntuk meyatakan suatu fungsi sama dengan cara menyatakan suatu relasi yaitu dnegan tiga cara, yakni: 2. Notasi fungsi. Fungsi dari himpunan A ke himpunan B dapat dinotasikan dengan: 3. Rumus fungsi. Untuk menentukan daerah hasil, maka notasi suatu fungsi harus diubah dahulu menjadi rumus fungsi.

Pada postingan sebelumnya telah dipaparkan cara menentukan nilai fungsi jika rumus fungsinya diketahui. Sekarang, akan membahas kebalikan dari kasus tersebut, yaitu jika nilai fungsinya diketahui. Pada postingan ini bentuk fungsi yang akan dibahas hanyalah fungsi linear saja, yaitu fx = ax + b. Untuk bentuk fungsi kuadrat dan pangkat tinggi akan Anda pelajari pada tingkat yang lebih tinggi. Oke langsung saja ke pembahasannya. Misalkan fungsi f dinyatakan dengan f x = ax + b , dengan a dan b konstanta dan x variabel maka rumus fungsinya adalah fx = ax + b. Jika nilai variabel x = m maka nilai fm = am + b. Dengan demikian, kita dapat menentukan bentuk fungsi f jika diketahui nilai-nilai fungsinya. Selanjutnya, nilai konstanta a dan b ditentukan berdasarkan nilai-nilai fungsi yang diketahui. Agar Anda lebih mudah memahaminya pelajarilah contoh berikut. Contoh Soal 1. Diketahui suatu fungsi linear fx = 2x + m. Tentukan bentuk fungsi tersebut jika f3 = 4. Penyelesaian Untuk menyelesiakan soal tersebut Anda harus mencari niali m terlebih dahulu, yakni fx = 2x + m f3 = + m = 4 4 = + m m = 4-6 m = -2 maka, fx = 2x -2 Contoh Soal 2 Jika fx = ax + b, f1 = 2, dan f2 = 1 maka tentukan a. Karena bentuk fx = ax + bmaka bentuk fungsi tersebut merupakan fungsi linear. Dengan demikian diperoleh f1 = 2, maka f1 = a 1 + b = 2 a+ b = 2 => a = 2 – b f2 = 1, maka f2 = a 2 + b = 1 2a+ b = 1 Untuk menentukan nilai b, masukan a = 2 – b ke persamaan 2a+ b = 1. maka 2a+ b = 1 22 – b + b = 1 4 – 2b + b = 1 – b = – 3 b = 3 Untuk menentukan nilai a, nilai b = 3 ke persamaan a = 2 – b a = 2 – 3 a = – 1 maka bentuk fungsi tersebut adalah fx = –x +3 b. bentuk paling sederhana dari fx – 1 adalah fx = –x +3 fx – 1 = –x – 1 +3 fx – 1 = –x + 1 +3 fx – 1 = –x + 4 c. bentuk paling sederhana dari fx + fx – 1 adalah fx + fx – 1 = –x +3 + –x + 4 fx + fx – 1 = –2x +7 Contoh soal 3. Diketahui fx = ax + b. Tentukan bentuk fungsi-fungsi berikut jika a. f1 = 3 dan f2 = 5; b. f0 = –6 dan f3 = –5; c. f2 = 3 dan f4 = 4. Penyelesaian a. Karena bentuk fx = ax + bmaka bentuk fungsi tersebut merupakan fungsi linear. Untuk f1 = 3, maka f1 = a 1 + b = 3 a+ b = 3 => a = 3 – b Untuk f2 = 5, maka f2 = a 2 + b = 5 2a+ b = 5 Untuk menentukan nilai b, masukan a = 3 – b ke persamaan 2a+ b = 5. maka 2a+ b = 5 23 – b + b = 5 6 – 2b + b = 5 – b = – 1 b = 1 Untuk menentukan nilai a, nilai b = 1 ke persamaan a = 3 – b a = 3 – 1 a = 2 maka bentuk fungsi tersebut adalah fx = 2x + 3 b. Karena bentuk fx = ax + bmaka bentuk fungsi tersebut merupakan fungsi linear. Untuk f0 = – 6, maka f0 = a 0 + b = – 6 b = – 6 Untuk f3 = – 5, maka f3 = a 3 + b = – 5 3a+ b = – 5 Untuk menentukan nilai a, masukan b = – 6 ke persamaan 3a+ b = – 5, maka 3a -6 = -5 3a = 1 a = 1/3 maka bentuk fungsi tersebut adalah fx = x/3 – 6 c. Karena bentuk fx = ax + bmaka bentuk fungsi tersebut merupakan fungsi linear. Untuk f2 = 3, maka f2 = a 2 + b = 3 2a+ b = 3 => b = 3 – 2a Untuk f4 = 4, maka f4 = a 4 + b = 4 4a+ b = 4 Untuk menentukan nilai a, masukan b = 3 – 2a ke persamaan 4a+ b = 4 maka 4a+ b = 4 4a + 3 – 2a = 4 2a = 1 a = 1/2 Untuk menentukan nilai b, nilai a = 1/2 ke persamaan b = 3 –2a b = 3 – 2a b = 3 – 21/2 b = 2 maka bentuk fungsi tersebut adalah fx = x/2 + 2 Contoh Soal 4 Diketahui fx = x + a + 3 dan f2 = 7. Tentukan a. bentuk fungsi fx; b. nilai f–1; c. nilai f–2 + f–1; d. bentuk fungsi f2x – 5. Penyelesaian a. Tentukan terlebih dahulu nilai dari a, yakni fx = x + a + 3 f2 = 2 + a + 3 = 7 a = 2 maka bentuk dari fx adalah fx = x + 5 b. nilai f–1 yakni fx = x + 5 f–1 = –1 + 5 f–1 = 4 c. nilai f–2 + f–1yakni fx = x + 5 f–2 + f–1 = – 2 + 5 + –1 + 5 f–2 + f–1 = 3 + 4 f–2 + f–1 = 7 d. bentuk fungsi f2x – 5 yakni fx = x + 5 f2x – 5 = 2x – 5 + 5 f2x – 5 = 2x 5. Diketahui dua buah fungsi, yaitu fx = 2 –ax/2 dan gx = 2 – a – 3x. Jika fx = gx, tentukan a. nilai a; b. bentuk fungsi fx dan gx; c. bentuk fungsi fx + gx; d. nilai f–1, f2, g1, dan g4 Penyelesaian a. nilai a yakni fx = gx 2 – ax/2 = 2 – a – 3x 4 – ax/2 = 2 – a – 3x 4 – ax = 22 – a – 3x 4 – ax = 4 – 2a – 3x 4 – ax = 4 – 2ax + 6x 4 – 4 – ax + 2ax = 6x ax = 6x a = 6x/x a = 6 Jadi nilai a adalah 6 b. bentuk fungsi fx dan gx dengan memasukan nila a = 6 maka fx = 2 –ax/2 fx = 2 –6x/2 fx = 2 –3x gx = 2 – a – 3x. gx = 2 – 6 – 3x. gx = 2 – 3x. c. bentuk fungsi fx + gx; fx + gx = 2 – 3x + 2 – 3x. fx + gx = 4 – 6x d. nilai f–1, f2, g1, dan g4 fx = 2 – 3x f–1 = 2 – 3–1 = 5 f2 = 2 – 32 = – 4 gx = 2 – 3x g1 = 2 – 31 = – 1 g4 = 2 – 34 = – 10

Rumusfungsi dari A ke B yang bersesuaian dengan diagram panah pada gambar adalah. PENDAHULUAN. Dalam dunia matematika, fungsi adalah pemetaan setiap anggota sebuah himpunan (dinamakan domain) kepada PEMBAHASAN. Jika menemukan soal semacam ini, maka yang perlu dilakukan adalah trial and error PenyelesaianSoal Rumus Fungsi Matematika. f : x à y atau f : x à f(x) Dalam pemetaan anggota himpunan A ke himpunan B, himpunan A akan disebut sebagai daerah asal (domain). Sedangkan himpunan B disebut sebagai daerah kawan (kodomain). Variabel x dalam fungsi dapat diganti dengan anggota himpunan A lainnya, sehingga disebut dengan variabel bebas. Jadi invers dari fungsi f(x) = 4x + 7 adalah f-1 (x) = (x − 7)/4. Perhatikan bahwa dengan rumus praktis di atas, kita bisa menghemat waktu beberapa detik atau bahkan menit. B. Rumus Fungsi Invers Bentuk Pecahan Fungsi berikutnya adalah fungsi berbentuk pecahan. Sama seperti fungsi linear, pada fungsi pecahan ini pangkat tertingginya juga satu. . 428 439 191 206 439 173 94 407

rumus fungsi dari a ke b